SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Ali Y, Haque MM, Mannering F. Anal. Meth. Accid. Res. 2023; 38: e100264.

Copyright

(Copyright © 2023, Elsevier Publishing)

DOI

10.1016/j.amar.2022.100264

PMID

unavailable

Abstract

Pedestrians represent a vulnerable road user group at signalised intersections. As such, properly estimating pedestrian crash risk at discrete short intervals is important for real-time safety management. This study proposes a novel real-time vehicle-pedestrian crash risk modelling framework for signalised intersections. At the core of this framework, a Bayesian Generalised Extreme Value modelling approach is employed to estimate crash risk in real-time from traffic conflicts captured by post encroachment time. A Block Maxima sampling approach, corresponding to a Generalised Extreme Value distribution, is used to identify pedestrian conflicts at the traffic signal cycle level. Several signal-level covariates are used to capture the time-varying heterogeneity of traffic extremes, and the crash risk of different signal cycles is also addressed within the Bayesian framework. The proposed framework is operationalised using a total of 144 hours of traffic movement video data from three signalised intersections in Queensland, Australia. To obtain signal cycle-level covariates, an automated covariate extraction algorithm is used that fuses three data sources (trajectory database from the video feed, traffic conflict database, and signal timing database) to obtain various covariates to explain time-varying crash risk across different cycles.

RESULTS show that the model provides a reasonable estimate of historical crash records at the study sites. Utilising the fitted generalised extreme value distribution, the proposed model provides real-time crash estimates at a signal cycle level and can differentiate between safe and risky signal cycles. The real-time crash risk model also helps understand the differential crash risk of pedestrians at a signalised intersection across different periods of the day. The findings of this study demonstrate the potential for the proposed real-time framework in estimating the vehicle-pedestrian crash risk at the signal cycle level, allowing proactive safety management and the development of real-time risk mitigation strategies for pedestrians.


Language: en

Keywords

Bayesian model; Crash risk; Pedestrian safety; Real-time; Signal cycle; Signalised intersection

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print