SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Cerda-Lugo A, Gonzalez-Galvan E, González A. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2021; 2021: 4816-4819.

Copyright

(Copyright © 2021, IEEE (Institute of Electrical and Electronics Engineers))

DOI

10.1109/EMBC46164.2021.9629955

PMID

34892287

Abstract

One of the most common injuries in athletes is that of the Anterior Cruciate Ligament (ACL). This type of injury is commonly analyzed by observing the dynamics of the body in the sagittal plane. ACL injury can be indicated by a the small knee flexion angle and a small angular position of the trunk at start of leg-landing task. In this article a 4 Degrees of Freedom (DOF) dynamic model of the human body restricted to the sagittal plane is presented. The model represents the movement of the legs, an equivalent ligament between the tibia and femur, thighs and trunk. It is used to represent the recovery of vertical posture during a double leg landing task. Initial conditions in velocity are calculated as those resulting from a free fall from a height H. The results obtained from the simulation were satisfactory since the recovery of the vertical posture is achieved and it is possible to approximate the deformation suffered by the equivalent ligament. In conclusion, this model can be very useful in determining the behavior of the ligament and eventually, the possibility of injury after a double-leg landing task.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print