SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Ata WG, Oyadiji SO. Veh. Syst. Dyn. 2014; 52(7): 969-991.

Copyright

(Copyright © 2014, Informa - Taylor and Francis Group)

DOI

10.1080/00423114.2014.909943

PMID

unavailable

Abstract

This is a theoretical investigation into the effect of various suspension configurations on a tracked vehicle performance over bump terrains. The model developed is validated using published experimental data of the modal characteristics of the vehicle. The desired performance is based on ride comfort via the mixed objective function (MOF), which combines the crest factor of bounce acceleration, bounce displacement, angular acceleration, and pitch angle. The optimisation process involves evaluating the MOF for different numbers and locations of dampers and under different rigid bump road conditions and speeds. The system responses of the selected suspension configurations in the time and frequency domains are compared against the undamped suspension. The results show that the suspension configurations have a significant effect on the vehicle mobility over bump road profiles. For a five-road-wheel half model of a tracked vehicle, the maximum number of dampers to use for ride comfort over these road bumps is three with the dampers located at wheel positions 1, 2 and 5. This confirms the current practice for many tracked vehicles with 10 road wheels. However, it is further shown that the suspension fitted with two dampers at the extreme road wheels offer the best performance over various rigid bump terrains.

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print