SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Tchamna R, Youn E, Youn I. Veh. Syst. Dyn. 2014; 52(Suppl 1): 69-91.

Copyright

(Copyright © 2014, Informa - Taylor and Francis Group)

DOI

10.1080/00423114.2014.881511

PMID

unavailable

Abstract

This paper focuses on the active safety of a full-vehicle nonlinear model during cornering. At first, a previously developed electronic stability controller (ESC) based on vehicle simplified model is applied to the full-car nonlinear model in order to control the vehicle yaw rate and side-slip angle. The ESC system was shown beneficial not only in tracking the vehicle path as close as possible, but it also helped in reducing the vehicle roll angle and influences ride comfort and road-holding capability; to tackle that issue and also to have better attitude motion, making use of optimal control theory the active suspension control gain is developed from a vehicle linear model and used to compute the active suspension control force of the vehicle nonlinear model. The active suspension control algorithm used in this paper includes the integral action of the suspension deflection in order to make zero the suspension deflection steady state and keep the vehicle chassis flat. Keeping the chassis flat reduces the vehicle load transfer and that is helpful for road holding and yaw rate tracking. The effects of the two controllers when they work together are analysed using various computer simulations with different steering wheel manoeuvres.

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print