SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Dong C, Nambisan SS, Richards SH, Ma Z. Transp. Res. A Policy Pract. 2015; 75: 30-41.

Copyright

(Copyright © 2015, Elsevier Publishing)

DOI

10.1016/j.tra.2015.03.007

PMID

unavailable

Abstract

Given the enormous losses to society resulting from large truck involved crashes, a comprehensive understanding of the effects of highway geometric design features on the frequency of truck involved crashes is needed. To better predict the occurrence probabilities of large truck involved crashes and gain direction for policies and countermeasures aimed at reducing the crash frequencies, it is essential to examine truck involved crashes categorized by collision vehicle types, since passenger cars and large trucks differ in dimensions, size, weight, and operating characteristics. A data set that includes a total of 1310 highway segments with 1787 truck involved crashes for a 4-year period, from 2004 to 2007 in Tennessee is employed to examine the effects that geometric design features and other relevant attributes have on the crash frequency. Since truck involved crash counts have many zeros (often 60-90% of all values) with small sample means and two established categories, car-truck and truck-only crashes, are not independent in nature, the zero-inflated negative binomial (ZINB) models are developed under the bivariate regression framework to simultaneously address the above mentioned issues. In addition, the bivariate negative binomial (BNB) and two individual univariate ZINB models are estimated for model validation. Goodness of fit of the investigated models is evaluated using AIC, SBC statistics, the number of identified significant variables, and graphs of observed versus expected crash frequencies. The bivariate ZINB (BZINB) models have been found to have desirable distributional property to describe the relationship between the large truck involved crashes and geometric design features in terms of better goodness of fit, more precise parameter estimates, more identified significant factors, and improved predictive accuracy. The results of BZINB models indicate that the following factors are significantly related to the likelihood of truck involved crash occurrences: large truck annual average daily traffic (AADT), segment length, degree of horizontal curvature, terrain type, land use, median type, lane width, right side shoulder width, lighting condition, rutting depth (RD), and posted speed limits. Apart from that, passenger car AADT, lane number, and indicator for different speed limits are found to have statistical significant effects on the occurrences of car-truck crashes and international roughness index (IRI) is significant for the predictions of truck-only crashes.

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print