SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Zhang M, Yang K, Zhang Q, Chen H, Fan M, Geng M, Wei B, Xie B. ACS Omega 2024; 9(15): 17036-17044.

Copyright

(Copyright © 2024, American Chemical Society)

DOI

10.1021/acsomega.3c08709

PMID

38645366

PMCID

PMC11025091

Abstract

In recent years, as the installed scale of battery energy storage systems (BESS) continues to expand, energy storage system safety incidents have been a fast-growing trend, sparking widespread concern from all walks of life. During the thermal runaway (TR) process of lithium-ion batteries, a large amount of combustible gas is released. In this paper, the 105 Ah lithium iron phosphate battery TR test was conducted, and the flammable gas components released from the battery TR were detected. The simulation tests of the diffusion and explosion characteristics of lithium iron phosphate battery's (LFP) TR gases with different numbers and positions in the BESS were carried out using FLACS simulation software. It was found that the more batteries TR simultaneously, the shorter the time for the combustible gas concentration in the energy storage cabin to reach the explosion limit. When 48 batteries were in TR simultaneously in the energy storage cabin, the shortest time was 9.8 s, and the further the location of the fire is from the hatch, the largest explosion overpressure is generated to the hatch, up to 583 kPa. When the gas generated by the TR of 48 batteries explodes, the maximum explosion overpressure at 5 m outside the energy storage cabin hatch is more significant than 40 kPa, which will cause serious injury to humans. The causes of TR of batteries in prefabricated chambers are complex, and the location and amount of thermal runaway of batteries as well as the diffusion of combustible fumes can have different effects on the external environment. The research results can provide support for the safety design of BESS.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print