SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Bishop DT, Waheed H, Dkaidek TS, Broadbent DP. Accid. Anal. Prev. 2024; 197: e107418.

Copyright

(Copyright © 2024, Elsevier Publishing)

DOI

10.1016/j.aap.2023.107418

PMID

38181567

Abstract

The optimal cycle light configuration for maximizing cyclists' conspicuity to drivers is not clear. Advances in sensor technology has led to the development of 'reactive' cycle lights that detect changes in the environment and consequently increase their flashing speed and brightness in risky situations - for example, when a rearward car is approaching - but no research has examined the effect of such lights on driver perception. The aim of the present study is to compare different cycle light configurations, including 'reactive' light technology, on drivers' ability to detect cyclists and estimate their proximity. We recruited 32 drivers to participate in two experiments, in which they viewed life-size real-world stimuli filmed from a driver's perspective in daytime and at dusk. The footage showed a cyclist on a bicycle with a rear light mounted on the seat post, in various configurations: static light, steady flashing, reactive flashing and no light. In Experiment 1, the drivers were required to detect the presence or absence of a cyclist on the road ahead as quickly as possible. In Experiment 2, they were required to estimate the distance of the cyclist from their vehicle, and to rate their confidence in their estimates. Experiment 1 revealed that drivers were quicker to detect the cyclist's presence in all rear cycle light conditions relative to the no light condition, but there were no differences in speed or accuracy across rear light conditions. Experiment 2 showed that drivers were more accurate in estimating the cyclist's proximity in the steady flashing and reactive flashing conditions, compared to static and no light conditions. Drivers were also more confident in their judgements in all rear light conditions compared to the no light condition. In conclusion, flashing rear cycle lights, regardless of reactive technology, enhanced drivers' perception of a cyclist ahead, notably in terms of their judgements of distance to that cyclist. Further investigation is needed to fully understand the impact of cycle light technology on driver perception, as well as the use of drivers' distance-to-cyclist estimates as an index of cyclists' cognitive conspicuity.


Language: en

Keywords

Collision; Safety; Vulnerable road user; Cycle; Smart technology

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print