SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Liu S, Zhang S, Diao Z, Fang Z, Jiao Z, Zhong Z. Math. Biosci. Eng. 2023; 20(9): 16913-16938.

Copyright

(Copyright © 2023, American Institute of Mathematical Sciences)

DOI

10.3934/mbe.2023754

PMID

37920040

Abstract

Existing pedestrian re-identification models generally have low pedestrian retrieval accuracy when encountering factors such as changes in pedestrian posture and occlusion because the network cannot fully express pedestrian feature information. Therefore, this paper proposes a method to address this problem by combining the attention mechanism with multi-scale feature fusion, and combining the proposed cross-attention module with the ResNet50 backbone network. In this way, the ability of the network to extract strong salient features is significantly improved; at the same time, using the multi-scale feature fusion module to extract multi-scale features from different depths of the network, achieving the complementary advantages between features through feature addition, feature concatenation and feature weight selection. In addition, a feature enhancement method and an efficient pedestrian retrieval strategy are proposed to jointly promote the accuracy of pedestrian retrieval from both the training and testing levels. When tested on the occluded pedestrian recognition datasets Partial-REID and Partial-iLIDS, the accuracy of this method reached 70.1% and 65.6% on the Rank-1 indicator respectively, and 82.2% and 80.5% on the Rank-3 indicator respectively. At the same time, it also achieved high recognition accuracy when tested on the Market1501 dataset and DukeMTMC-reid dataset, reaching 95.9% and 89.9% on the Rank-1 indicator respectively, 89.1% and 80.3% on the mAP indicator respectively, and 67% and 46.2% on the mINP indicator respectively. It can be seen that this method has achieved good results in solving the above problems.


Language: en

Keywords

cross attention; deep learning; multi-scale features fusion; pedestrian re-identification

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print