SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Lin C, Sun G, Wu D, Xie C. Sensors (Basel) 2023; 23(19).

Copyright

(Copyright © 2023, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/s23198143

PMID

37836973

PMCID

PMC10575351

Abstract

By the end of the 2020s, full autonomy in autonomous driving may become commercially viable in certain regions. However, achieving Level 5 autonomy requires crucial collaborations between vehicles and infrastructure, necessitating high-speed data processing and low-latency capabilities. This paper introduces a vehicle tracking algorithm based on roadside LiDAR (light detection and ranging) infrastructure to reduce the latency to 100 ms without compromising the detection accuracy. We first develop a vehicle detection architecture based on ResNet18 that can more effectively detect vehicles at a full frame rate by improving the BEV mapping and the loss function of the optimizer. Then, we propose a new three-stage vehicle tracking algorithm. This algorithm enhances the Hungarian algorithm to better match objects detected in consecutive frames, while time-space logicality and trajectory similarity are proposed to address the short-term occlusion problem. Finally, the system is tested on static scenes in the KITTI dataset and the MATLAB/Simulink simulation dataset. The results show that the proposed framework outperforms other methods, with F1-scores of 96.97% and 98.58% for vehicle detection for the KITTI and MATLAB/Simulink datasets, respectively. For vehicle tracking, the MOTA are 88.12% and 90.56%, and the ID-F1 are 95.16% and 96.43%, which are better optimized than the traditional Hungarian algorithm. In particular, it has a significant improvement in calculation speed, which is important for real-time transportation applications.


Language: en

Keywords

autonomous driving; KITTI; MATLAB/Simulink; ResNet18; roadside LiDAR sensor; vehicle detection; vehicle tracking

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print