SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Jiang Y, Chen B, Li X, Ding Z. Appl. Math. Model. 2020; 80: 815-826.

Copyright

(Copyright © 2020, Elsevier Publishing)

DOI

10.1016/j.apm.2019.10.016

PMID

unavailable

Abstract

This paper presents a generalized walking cost distribution to determine a dynamic navigation field in the social force model for pedestrian evacuation. The local walking cost per unit distance of movement includes the cost associated with travel time and other additional costs incurred by pedestrians to avoid colliding with obstacles in a dynamic environment. In the dynamic navigation field, pedestrians expect to choose an optimal path with the lowest walking cost to reach their target destination reactively based on available instantaneous information. The social force model with the dynamic navigation field is validated by comparing the simulation results with empirical observations. The fundamental diagrams for observations and simulation data agree well, which indicates the effectiveness of the model. Numerical results show that the model with the dynamic navigation field can reproduce typical stages of the dynamics of pedestrian evacuation, such as self-organized arching and queuing phenomena, and can capture the route choice and exit choice behaviors of pedestrians during the evacuation process. Compared to the model with the static navigation field, the model with the dynamic navigation field can reduce the total evacuation time of the room and save the required CPU time for a large group of pedestrians. Furthermore, the strong tendency to avoid local high-density regions (i.e., minimizing collisions) can also reduce the total evacuation time under the same conditions.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print