SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Kulsoom I, Hua W, Hussain S, Chen Q, Khan G, Shihao D. Sci. Rep. 2023; 13(1): e3344.

Copyright

(Copyright © 2023, Nature Publishing Group)

DOI

10.1038/s41598-023-30009-z

PMID

36849465

Abstract

Geological settings of the Karakoram Highway (KKH) increase the risk of natural disasters, threatening its regular operations. Predicting landslides along the KKH is challenging due to limitations in techniques, a challenging environment, and data availability issues. This study uses machine learning (ML) models and a landslide inventory to evaluate the relationship between landslide events and their causative factors. For this, Extreme Gradient Boosting (XGBoost), Random Forest (RF), Artificial Neural Network (ANN), Naive Bayes (NB), and K Nearest Neighbor (KNN) models were used. A total of 303 landslide points were used to create an inventory, with 70% for training and 30% for testing. Susceptibility mapping used Fourteen landslide causative factors. The area under the curve (AUC) of a receiver operating characteristic (ROC) is employed to compare the accuracy of the models. The deformation of generated models in susceptible regions was evaluated using SBAS-InSAR (Small-Baseline subset-Interferometric Synthetic Aperture Radar) technique. The sensitive regions of the models showed elevated line-of-sight (LOS) deformation velocity. The XGBoost technique produces a superior Landslide Susceptibility map (LSM) for the region with the integration of SBAS-InSAR findings. This improved LSM offers predictive modeling for disaster mitigation and gives a theoretical direction for the regular management of KKH.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print