SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Shao Z, Cheng G, Ma J, Wang Z, Wang J, Li D. IEEE Trans. Multimedia 2022; 24: 2069-2083.

Copyright

(Copyright © 2022, Institute of Electrical and Electronics Engineers)

DOI

10.1109/TMM.2021.3075566

PMID

35582598

PMCID

PMC9088826

Abstract

Coronavirus Disease 2019 (COVID-19) is a highly infectious virus that has created a health crisis for people all over the world. Social distancing has proved to be an effective non-pharmaceutical measure to slow down the spread of COVID-19. As unmanned aerial vehicle (UAV) is a flexible mobile platform, it is a promising option to use UAV for social distance monitoring. Therefore, we propose a lightweight pedestrian detection network to accurately detect pedestrians by human head detection in real-time and then calculate the social distancing between pedestrians on UAV images. In particular, our network follows the PeleeNet as backbone and further incorporates the multi-scale features and spatial attention to enhance the features of small objects, like human heads. The experimental results on Merge-Head dataset show that our method achieves 92.22% AP (average precision) and 76 FPS (frames per second), outperforming YOLOv3 models and SSD models and enabling real-time detection in actual applications. The ablation experiments also indicate that multi-scale feature and spatial attention significantly contribute the performance of pedestrian detection. The test results on UAV-Head dataset show that our method can also achieve high precision pedestrian detection on UAV images with 88.5% AP and 75 FPS. In addition, we have conducted a precision calibration test to obtain the transformation matrix from images (vertical images and tilted images) to real-world coordinate. Based on the accurate pedestrian detection and the transformation matrix, the social distancing monitoring between individuals is reliably achieved.


Language: en

Keywords

COVID-19; pedestrian detection; social distancing monitoring; spatial attention; UAV

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print