SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Korucuoglu O, Harms MP, Kennedy JT, Golosheykin S, Astafiev SV, Barch DM, Anokhin AP. Cereb. Cortex 2019; ePub(ePub): ePub.

Affiliation

Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA.

Copyright

(Copyright © 2019, Oxford University Press)

DOI

10.1093/cercor/bhz269

PMID

31828300

Abstract

An increased propensity for risk taking is a hallmark of adolescent behavior with significant health and social consequences. Here, we elucidated cortical and subcortical regions associated with risky and risk-averse decisions and outcome evaluation using the Balloon Analog Risk Task in a large sample of adolescents (n = 256, 56% female, age 14 ± 0.6), including the level of risk as a parametric modulator. We also identified sex differences in neural activity. Risky decisions engaged regions that are parts of the salience, dorsal attention, and frontoparietal networks, but only the insula was sensitive to increasing risks in parametric analyses. During risk-averse decisions, the same networks covaried with parametric levels of risk. The dorsal striatum was engaged by both risky and risk-averse decisions, but was not sensitive to escalating risk. Negative-outcome processing showed greater activations than positive-outcome processing. Insula, lateral orbitofrontal cortex, middle, rostral, and superior frontal areas, rostral and caudal anterior cingulate cortex were activated only by negative outcomes, with a subset of regions associated with negative outcomes showing greater activation in females. Taken together, these results suggest that safe decisions are predicted by more accurate neural representation of increasing risk levels, whereas reward-related processes play a relatively minor role.

© The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.


Language: en

Keywords

BART; effect size; fMRI; insula; parametric design

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print