SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Thiers‐Moggia R, Málaga‐Chuquitaype C. Earthquake Eng. Struct. Dynam. 2019; 48(5): 528-547.

Copyright

(Copyright © 2019, John Wiley and Sons)

DOI

10.1002/eqe.3147

PMID

unavailable

Abstract

The seismic behaviour of a wide variety of structures can be characterized by the rocking response of rigid blocks. Nevertheless, suitable seismic control strategies are presently limited and consist mostly on preventing rocking motion all together, which may induce undesirable stress concentrations and lead to impractical interventions. In this paper, we investigate the potential advantages of using supplemental rotational inertia to mitigate the effects of earthquakes on rocking structures. The newly proposed strategy employs inerters, which are mechanical devices that develop resisting forces proportional to the relative acceleration between their terminals and can be combined with a clutch to ensure their rotational inertia is only employed to oppose the motion. We demonstrate that the inclusion of the inerter effectively reduces the frequency parameter of the block, resulting in lower rotation seismic demands and enhanced stability due to the well-known size effects of the rocking behaviour. The effects of the inerter and inerter-clutch devices on the response scaling and similarity are also studied. An examination of their overturning fragility functions reveals that inerter-equipped structures experience reduced probabilities of overturning in comparison with uncontrolled bodies, while the addition of a clutch further improves their seismic stability. The concept advanced in this paper is particularly attractive for the protection of rocking bodies as it opens the possibility of nonlocally modifying the dynamic response of rocking structures without altering their geometry.


Language: en

Keywords

clutch; dimensional analysis; inerter; pulse-like ground motion; rocking motion; seismic control

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print