SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Enayatollahi F, Atashgah MAA. Aviation 2018; 22(3): 102-114.

Copyright

(Copyright © 2018, Vilnius Gediminas Technical University, Publisher Vilnius Gediminas Technical University)

DOI

10.3846/aviation.2018.6252

PMID

unavailable

Abstract

The behavior of any traffic flow is sensitive to the speed pattern of the vehicles involved. The heavier the traffic, the more sensitive the behavior is to speed changes. Focusing on air traffic flow, weather condition has a major role in the deviations of aircraft operational speed from the desired speed and causes surplus delays. In this paper, the effects of wind on delays in a terminal area are analyzed using a Cellular Automaton (CA) model. Cellular automata are discrete models that are widely used for simulating complex emerging properties of dynamic systems. A one-dimensional cellular array is used to model the flow of the terminal traffic into a wind field. The proposed model, due to the quickness and acceptable level of accuracy, can be utilized online in the tactical phase of air traffic control processes and system-level decision-makings, where quick response and system behavior are needed. The modeled route is an RNAV STAR route to Atlanta International Airport. The model is verified by real traffic data in a non-delayed scenario. Based on simulation results, the proposed model exhibits an acceptable level of accuracy (3-15% accuracy drop), with worthy time and computational efficiency (about 2.9 seconds run time for a 2-hour operation).

Keyword : terminal area traffic, traffic flow management, wind effect, traffic modeling, cellular automata


Language: en

Keywords

cellular automata; terminal area traffic; traffic flow management; traffic modeling; wind effect

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print