SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Chen W, Peng J, Hong H, Shahabi H, Pradhan B, Liu J, Zhu AX, Pei X, Duan Z. Sci. Total Environ. 2018; 626: 1121-1135.

Affiliation

College of Geology & Environments, Xi'an University of Science and Technology, Xi'an 710054, China.

Copyright

(Copyright © 2018, Elsevier Publishing)

DOI

10.1016/j.scitotenv.2018.01.124

PMID

29898519

Abstract

The preparation of a landslide susceptibility map is considered to be the first step for landslide hazard mitigation and risk assessment. However, these maps are accepted as end products that can be used for land use planning. The main goal of this study is to assess and compare four advanced machine learning techniques, namely the Bayes' net (BN), radical basis function (RBF) classifier, logistic model tree (LMT), and random forest (RF) models, for landslide susceptibility modelling in Chongren County, China. A total of 222 landslide locations were identified in the study area using historical reports, interpretation of aerial photographs, and extensive field surveys. The landslide inventory data was randomly split into two groups with a ratio of 70/30 for training and validation purposes. Fifteen landslide conditioning factors were prepared for landslide susceptibility modelling. The spatial correlation between landslides and conditioning factors was analyzed using the information gain (IG) method. The BN, RBF classifier, LMT, and RF models were constructed using the training dataset. Finally, the receiver operating characteristic (ROC) and statistical measures, including sensitivity, specificity, and accuracy, were employed to validate and compare the predictive capabilities of the models. Out of the tested models, the RF model had the highest sensitivity, specificity, and accuracy values of 0.787, 0.716, and 0.752, respectively, for the training dataset. Overall, the RF model produced an optimized balance for the training and validation datasets in terms of AUC values and statistical measures. The results of this study also demonstrate the benefit of selecting optimal machine learning techniques with proper conditioning selection methods for landslide susceptibility modelling.

Copyright © 2018 Elsevier B.V. All rights reserved.


Language: en

Keywords

Bayes' net; China; Landslide susceptibility; Logistic model tree; Radical basis function classifier; Random forest

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print