SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Kaiser K, Prystaz K, Vikman A, Haffner-Luntzer M, Bergdolt S, Strauss G, Waetzig GH, Rose-John S, Ignatius A. Naunyn Schmiedebergs Arch. Pharmacol. 2018; 391(5): 523-536.

Affiliation

Institute of Orthopedic Research and Biomechanics, Trauma Research Center Ulm, University Medical Center Ulm, 89081, Ulm, Germany. anita.ignatius@uni-ulm.de.

Copyright

(Copyright © 2018, Holtzbrinck Springer Nature Publishing Group)

DOI

10.1007/s00210-018-1483-7

PMID

29497762

Abstract

Patients with multiple injuries frequently suffer bone fractures and are at high risk to develop fracture healing complications. Because of its key role both in systemic posttraumatic inflammation and fracture healing, the pleiotropic cytokine interleukin-6 (IL-6) may be involved in the pathomechanisms of trauma-induced compromised fracture healing. IL-6 signals are transmitted by two different mechanisms: classic signaling via the membrane-bound receptor (mIL-6R) and trans-signaling via its soluble form (sIL-6R). Herein, we investigated whether IL-6 classic and trans-signaling play different roles in bone regeneration after severe injury. Twelve-week-old C57BL/6J mice underwent combined femur osteotomy and thoracic trauma. To study the function of IL-6, either an anti-IL-6 antibody, which inhibits both IL-6 classic and trans-signaling, or a soluble glycoprotein 130 fusion protein (sgp130Fc), which selectively blocks trans-signaling, were injected 30 min and 48 h after surgery. Bone healing was assessed using cytokine analyses, flow cytometry, histology, micro-computed tomography, and biomechanical testing. Selective inhibition of IL-6 trans-signaling significantly improved the fracture healing outcome after combined injury, as confirmed by accelerated cartilage-to-bone transformation, enhanced bony bridging of the fracture gap and improved mechanical callus properties. In contrast, global IL-6 inhibition did not affect compromised fracture healing. These data suggest that classic signaling may mediate beneficial effects on bone repair after severe injury. Selective inhibition of IL-6 trans-signaling might have therapeutic potential to treat fracture healing complications in patients with concomitant injuries.


Language: en

Keywords

Bone fracture healing; Classic signaling; IL-6; Inflammation; Trans-signaling; Trauma

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print