SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Jamison KLT, Boardman DA. MATEC Web Conf. 2016; 46: 02004.

Copyright

(Copyright © 2016, EDP Sciences)

DOI

10.1051/matecconf/20164602004

PMID

unavailable

Abstract

Cavity walls containing combustible insulation present an increased risk for fire propagation in a confined, concealed space. Damage to the building resulting from ignition of combustible insulation can be extensive; especially so, in the absence of horizontal and vertical fire-stops. Current codes and standards assess fire performance of exterior wall assemblies subjected to external ignition sources. However, test methods do not address the potential fire hazard resulting from ignition of combustible insulation within the wall cavity. A fire performance test has been developed that evaluates the fire propagation behavior of combustible insulation in a configuration that is representative of the actual installation. The test utilizes a full scale cavity wall assembly and offers fire performance evaluation of insulation of any thickness for either a 51 mm or 102 mm wide air space. A propane sand burner was selected as the ignition source; in addition to being reliable and repeatable, its heat output was carefully calibrated to be representative of potential ignition scenarios that may occur within a cavity wall. During the 15 minute fire performance test, the sample is continuously subjected to the propane sand burner exposure fire. An acceptable sample will produce a peak chemical heat release rate less than 100 kW and a maximum visible flame height less than 1.8 m. This fire performance test method is being incorporated into FM Approvals Standard for Cavity Walls and Rainscreens, Class Number 4411 [1] and is suitable for incorporation into other codes and standards.

© Owned by the authors, published by EDP Sciences, 2016


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print