SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Oukkache N, ElJaoudi R, Chgoury F, Rocha MT, Sabatier JM. Sheng Li Xue Bao 2015; 67(3): 295-304.

Affiliation

Laboratory INSERM UMRs 1097, Aix-Marseille University, Science and Technology Park of Luminy, Marseille 13288, France.

Copyright

(Copyright © 2015, Science Press)

DOI

unavailable

PMID

26109302

Abstract

In the present study, a 'novel' toxin, called Am IT from the venom of scorpion Androctonus mauretanicus is isolated and characterized. A detailed analysis of the action of Am IT on insect axonal sodium currents is reported. Am IT was purified through gel filtration followed by C18 reversed-phase HPLC. Toxicity of Am IT in vivo was assessed on male German cockroach (Blattella germanica) larvae and C57/BL6 mice. Cross-reactivity of Am IT with two β-toxins was evidenced using (125)I-iodinated toxin-based radioimmunoassays with synaptosomal preparations from rat brain. The complete amino acid sequence of Am IT was finally determined by Edman sequencing. Am IT was observed to compete with AaH IT4 purified from the venom of scorpion Androctonus australis in binding assays. It was recognized by an antibody raised against a β-type toxin, which indicated some structural similarity with β-toxins (or related toxin family). The 'novel' toxin exhibited dual activity since it competed with anti-mammal toxins in binding assays as well as showed contracting activity to insect. The toxin competed with radio-labeled β-toxin Css IV by binding to Na(+) channels of rat brain synaptosomes. Analysis of toxin amino acid sequences showed that Am IT shares high structural identity (92%) with AaH IT4. In conclusion, Am IT not only reveals an anti-insect compound properties secreted by 'Old World' scorpions, paralyzing insect larvae by binding to Na(+) channels on larvae's nerve-cell membranes, but also exerts toxic activity in mice, which is similar to anti-mammal toxins from 'New World' scorpions (North and South Americas). Therefore, Am IT appears to be structurally and functionally similar to AaH IT4.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print