SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Zhou GGD, Cui P, Chen HY, Zhu XH, Tang JB, Sun QC. Landslides 2013; 10(5): 633-643.

Copyright

(Copyright © 2013, Holtzbrinck Springer Nature Publishing Group)

DOI

10.1007/s10346-012-0352-6

PMID

unavailable

Abstract

Landslide dams in mountainous areas are quite common. Typically, intense rainfalls can induce upstream flows along the sloping channel, which greatly affects the stability and failure modes of landslide dams. If a series of landslide dams are sequentially collapsed by an incoming mountain torrent (induced by intense rainfall), large debris flows can be formed in a short period of time. This also amplifies the magnitude of the debris flows along the flow direction. The catastrophic debris flows, which occurred in Zhouqu, China on August 8, 2010, were indeed caused by intense rainfall and the upstream cascading failure of landslide dams along the gullies. Experimental tests were conducted in a sloping channel to understand the dynamic process of cascading landslide dam failures and their effect on flow scale amplification. Similar to the Zhouqu conditions, the modeled landslide dams were distributed along a sloping channel and breached by different upstream flows. For each experiment, the front flows were sampled, the entrained grain sizes were analyzed, and the front discharge along the channel was measured. The results of these experiments show that landslide dams occurring along the channel can be destroyed by both high and low discharge flows, although the mechanisms are quite different for the two flow types. Regardless of flow type, the magnitude of the flows significantly increases after a cascading failure of landslide dams, resulting in an increase in both the diameter and the entrained coarse particles percentage.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print