SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Ivanović V, Deur J, Kostelac M, Pentek T, Hrovat D. Veh. Syst. Dyn. 2011; 49(10): 1623-1647.

Copyright

(Copyright © 2011, Informa - Taylor and Francis Group)

DOI

10.1080/00423114.2010.528778

PMID

unavailable

Abstract

The paper shows that, during abrupt wheel torque transients for ice surface and low vehicle speeds, the tyre can develop significantly larger longitudinal force than the peak value of the tyre static curve. This so-called dynamic tyre friction potential (DTFP) effect has many influencing factors such as the rate of change of the wheel torque, the vehicle speed, and the tyre dwell time. The paper presents a detailed analysis of the DTFP behaviour based on the experimental data collected by using an in-wheel motor-based tyre test vehicle. The analysis results and an insight into the brush structure of a tyre model lead to the hypothesis that the different influencing factors may be predominantly explained by the bristle dwell time (BDT) effect. Following this hypothesis, the LuGre model of the tyre friction dynamics is extended with a physical BDT sub-model. The experimental validation results show that the proposed model can accurately capture the low-speed tyre-ice friction behaviour during abrupt wheel torque transients.

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print