SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Sassa K, Nagai O, Solidum R, Yamazaki Y, Ohta H. Landslides 2010; 7(3): 219-236.

Copyright

(Copyright © 2010, Holtzbrinck Springer Nature Publishing Group)

DOI

10.1007/s10346-010-0230-z

PMID

unavailable

Abstract

A gigantic rapid landslide claiming over 1,000 fatalities was triggered by rainfalls and a small nearby earthquake in the Leyte Island, Philippines in 2006. The disaster presented the necessity of a new modeling technology for disaster risk preparedness which simulates initiation and motion. This paper presents a new computer simulation integrating the initiation process triggered by rainfalls and/or earthquakes and the development process to a rapid motion due to strength reduction and the entrainment of deposits in the runout path. This simulation model LS-RAPID was developed from the geotechnical model for the motion of landslides (Sassa 1988 ) and its improved simulation model (Sassa et al. 2004b ) and new knowledge obtained from a new dynamic loading ring shear apparatus (Sassa et al. 2004a ). The examination of performance of each process in a simple imaginary slope addressed that the simulation model well simulated the process of progressive failure, and development to a rapid landslide. The initiation process was compared to conventional limit equilibrium stability analyses by changing pore pressure ratio. The simulation model started to move in a smaller pore pressure ratio than the limit equilibrium stability analyses because of progressive failure. However, when a larger shear deformation is set as the threshold for the start of strength reduction, the onset of landslide motion by the simulation agrees with the cases where the factor of safety estimated by the limit equilibrium stability analyses equals to a unity. The field investigation and the undrained dynamic loading ring shear tests on the 2006 Leyte landslide suggested that this landslide was triggered by the combined effect of pore water pressure due to rains and a very small earthquake. The application of this simulation model could well reproduce the initiation and the rapid long runout motion of the Leyte landslide.

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print