SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

van der Krogt MM, Delp SL, Schwartz MH. Gait Posture 2012; 36(1): 113-119.

Affiliation

Department of Rehabilitation Medicine, Research Institute MOVE, VU University Medical Center, Amsterdam, The Netherlands; Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands.

Copyright

(Copyright © 2012, Elsevier Publishing)

DOI

10.1016/j.gaitpost.2012.01.017

PMID

22386624

Abstract

Humans have a remarkable capacity to perform complex movements requiring agility, timing, and strength. Disuse, aging, and disease can lead to a loss of muscle strength, which frequently limits the performance of motor tasks. It is unknown, however, how much weakness can be tolerated before normal daily activities become impaired. This study examines the extent to which lower limb muscles can be weakened before normal walking is affected. We developed muscle-driven simulations of normal walking and then progressively weakened all major muscle groups, one at the time and simultaneously, to evaluate how much weakness could be tolerated before execution of normal gait became impossible. We further examined the compensations that arose as a result of weakening muscles. Our simulations revealed that normal walking is remarkably robust to weakness of some muscles but sensitive to weakness of others. Gait appears most robust to weakness of hip and knee extensors, which can tolerate weakness well and without a substantial increase in muscle stress. In contrast, gait is most sensitive to weakness of plantarflexors, hip abductors, and hip flexors. Weakness of individual muscles results in increased activation of the weak muscle, and in compensatory activation of other muscles. These compensations are generally inefficient, and generate unbalanced joint moments that require compensatory activation in yet other muscles. As a result, total muscle activation increases with weakness as does the cost of walking. By clarifying which muscles are critical to maintaining normal gait, our results provide important insights for developing therapies to prevent or improve gait pathology.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print