SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Hewson DJ, McNair PJ, Marshall RN. Aviat. Space Environ. Med. 1999; 70(8): 745-751.

Affiliation

Aviation Medicine Unit, Royal New Zealand Air Force, Whenuapai, Auckland.

Copyright

(Copyright © 1999, Aerospace Medical Association)

DOI

unavailable

PMID

10447046

Abstract

BACKGROUND: Flying an aircraft requires a considerable degree of coordination, particularly during activities such as takeoff and landing. No studies have examined the magnitude and phasing of muscle activity required to fly an aircraft. The aim of this study was to examine the muscle activation patterns and control forces of novice and experienced pilots during simulated flight. METHODS: Twelve experienced and nine novice pilots were tested on an Aermacchi flight simulator while performing a randomized set of take-off and landing maneuvers. Four different runaway trim settings were used to increase the difficulty of the landings (elevator-up, elevator-down, aileron-left, and aileron-right). Variables recorded included aircraft attitude, pilot applied forces, and electromyographic (EMG) activity. Discriminant function analysis was used to distinguish between novice and experienced pilots. RESULTS: Across all landings, wrist flexors and wrist extensors were the predominant muscles used, with EMG activity consistently around 20-30% maximum voluntary contraction (MVC). In respect to differences in EMG activity between novice and experienced pilots, novices had significantly more activity in wrist extensors during all landings. In contrast, experienced pilots had consistently more vastus lateralis activity for all landings than did novice pilots. Over all landings and take-off, 89.5% of pilots were correctly classified as novice or experienced. When the maneuvers were analyzed individually, normal, elevator-down, and aileron-left landings were the most accurate maneuvers for pilot prediction. EMG and force variables were more important than aircraft attitude in discriminating between novice and experienced pilots (83%, 79%, and 65%, respectively). CONCLUSION: The consistency of the finding that EMG activity and control forces are accurate discriminators of pilot experience is indicative of underlying differences in neuromuscular control strategies between novice and experienced pilots.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print