SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Cervantes MC, Delville Y. Neuroscience 2007; 150(3): 511-521.

Affiliation

Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712-0805, USA. catalinacervantes@mail.utexas.edu

Copyright

(Copyright © 2007, International Brain Research Organization, Publisher Elsevier Publishing)

DOI

10.1016/j.neuroscience.2007.09.034

PMID

17964736

Abstract

In humans, reactive aggression is associated with impulsivity. The purpose of this study is to relate reactive and impulsive aggression in humans with offensive aggression in animals and identify neurobiological correlates associated with certain forms of the behavior. We predicted that individual differences in offensive aggression are associated with individual differences in impulsivity. Adult male hamsters were repeatedly tested for offensive responses and divided into High-Aggression or Low-Aggression groups. They were then trained and tested under a delay-discounting paradigm to assess impulsivity. High-Aggression animals consistently attacked and bit more frequently and faster, and showed highly repetitive behavior, indicated by repeated attacks per contact bout. In addition, these animals engaged in more fragmented and shorter contact bouts. During impulsivity testing, High-Aggression animals preferred immediate smaller rewards over delayed larger rewards. Furthermore, 5-HT and vasopressin (AVP) innervation was compared between the groups. High-Aggression animals showed decreased 5-HT varicosities in several key brain areas involved in aggressive and/or impulsive behavior and decreased AVP fibers in the anterior hypothalamus. Together, these data show a convergence of behavioral phenotypes through individual differences in offensive aggression and impulsivity. As such, this association provides support for an animal model of reactive and impulsive aggression. Furthermore, this behavioral convergence is supported by a concurrent reduction in 5-HT innervation of brain areas controlling aggression and impulsivity, providing a common neural mechanism for this phenotype.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print