We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article


Liu T, Luo W, Ma L, Huang JJ, Stathaki T, Dai T. IEEE Trans. Image Process. 2020; ePub(ePub): ePub.


(Copyright © 2020, IEEE (Institute of Electrical and Electronics Engineers))






Pedestrian detection methods have been significantly improved with the development of deep convolutional neural networks. Nevertheless, detecting small-scaled pedestrians and occluded pedestrians remains a challenging problem. In this paper, we propose a pedestrian detection method with a couple-network to simultaneously address these two issues. One of the sub-networks, the gated multi-layer feature extraction sub-network, aims to adaptively generate discriminative features for pedestrian candidates in order to robustly detect pedestrians with large variations on scale. The second sub-network targets on handling the occlusion problem of pedestrian detection by using deformable regional region of interest (RoI)-pooling. We investigate two different gate units for the gated sub-network, namely, the channel-wise gate unit and the spatio-wise gate unit, which can enhance the representation ability of the regional convolutional features among the channel dimensions or across the spatial domain, repetitively. Ablation studies have validated the effectiveness of both the proposed gated multi-layer feature extraction sub-network and the deformable occlusion handling sub-network. With the coupled framework, our proposed pedestrian detector achieves promising results on both two pedestrian datasets, especially on detecting small or occluded pedestrians. On the CityPersons dataset, the proposed detector achieves the lowest missing rates (i.e. 40.78% and 34.60%) on detecting small and occluded pedestrians, surpassing the second best comparison method by 6.0% and 5.87%, respectively.

Language: en


All SafetyLit records are available for automatic download to Zotero & Mendeley