We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article


Zhang F, Li C, Yang F. Sensors (Basel) 2019; 19(3): s19030594.


School of Mechanical Electronic and Information Engineering, China University of Mining and Technology, Beijing, Beijing 100083, China.


(Copyright © 2019, MDPI: Multidisciplinary Digital Publishing Institute)






Vehicle detection with category inference on video sequence data is an important but challenging task for urban traffic surveillance. The difficulty of this task lies in the fact that it requires accurate localization of relatively small vehicles in complex scenes and expects real-time detection. In this paper, we present a vehicle detection framework that improves the performance of the conventional Single Shot MultiBox Detector (SSD), which effectively detects different types of vehicles in real-time. Our approach, which proposes the use of different feature extractors for localization and classification tasks in a single network, and to enhance these two feature extractors through deconvolution (D) and pooling (P) between layers in the feature pyramid, is denoted as DP-SSD. In addition, we extend the scope of the default box by adjusting its scale so that smaller default boxes can be exploited to guide DP-SSD training. Experimental results on the UA-DETRAC and KITTI datasets demonstrate that DP-SSD can achieve efficient vehicle detection for real-world traffic surveillance data in real-time. For the UA-DETRAC test set trained with UA-DETRAC trainval set, DP-SSD with the input size of 300 × 300 achieves 75.43% mAP (mean average precision) at the speed of 50.47 FPS (frames per second), and the framework with a 512 × 512 sized input reaches 77.94% mAP at 25.12 FPS using an NVIDIA GeForce GTX 1080Ti GPU. The DP-SSD shows comparable accuracy, which is better than those of the compared state-of-the-art models, except for YOLOv3.

Language: en


convolutional neural network; default box; feature concatenation; real-time; vehicle detection


All SafetyLit records are available for automatic download to Zotero & Mendeley