We compile citations and summaries of about 400 new articles every week.
Email Signup | RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article


Rodriguez AM, Dutertre S, Lewis RJ, Marí F. Anal. Bioanal. Chem. 2015; 407(20): 6105-6116.


Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, FL, 33431-0991, USA.


(Copyright © 2015, Holtzbrinck Springer Nature Publishing Group)






The venom of cone snails is composed of highly modified peptides (conopeptides) that target a variety of ion channels and receptors. The venom of these marine gastropods represents a largely untapped resource of bioactive compounds of potential pharmaceutical value. Here, we use a combination of bioanalytical techniques to uncover the extent of venom expression variability in Conus purpurascens, a fish-hunting cone snail species. The injected venom of nine specimens of C. purpurascens was separated by reversed-phase high-performance liquid chromatography (RP-HPLC), and fractions were analyzed using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS) in parallel with liquid chromatography-electrospray ionization (LC-ESI)-TripleTOF-MS to compare standard analytical protocols used in preparative bioassay-guided fractionations with a deeper peptidomic analysis. Here, we show that C. purpurascens exhibits pronounced intraspecific venom variability. RP-HPLC fractionation followed by MALDI-TOF-MS analysis of the injected venom of these nine specimens identified 463 distinct masses, with none common to all specimens. Using LC-ESI-TripleTOF-MS, the injected venom of these nine specimens yielded a total of 5517 unique masses. We also compare the injected venom of two specimens with their corresponding dissected venom. We found 2566 and 1990 unique masses for the dissected venom compared to 941 and 1959 masses in their corresponding injected venom. Of these, 742 and 1004 masses overlapped between the dissected and injected venom, respectively. The results indicate that larger conopeptide libraries can be assessed by studying multiple individuals of a given cone snail species. This expanded library of conopeptides enhances the opportunities for discovery of molecular modulators with direct relevance to human therapeutics. Graphical Abstract The venom of cone snails are extraordinarily complex mixtures of highly modified peptides. Venom analysis requires separation through RP-HPLC followed by MALDI-TOF mass spectrometry or direct analysis using LC-ESI-TripleTOF-MS. Using these techniques, venom intraspecific variability and comparison between injected and dissected were assessed.

Language: en


All SafetyLit records are available for automatic download to Zotero & Mendeley