SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Mitri GH, Gitas IZ. Int. J. Wildland Fire 2008; 17(3): 431-442.

Copyright

(Copyright © 2008, International Association of Wildland Fire, Fire Research Institute, Publisher CSIRO Publishing)

DOI

10.1071/WF07103

PMID

unavailable

Abstract

Mapping fire severity is necessary in order (1) to locate areas in need of special or intense post-fire management; (2) to allow the study of fire impact and vegetation recovery; and (3) to validate fire risk and fire behaviour models. The present study aimed to develop a method to map the severity of fire by employing post-fire IKONOS imagery. The objective was to develop an object-oriented model that would distinguish between different degrees of fire severity and to assess the accuracy of the model by employing field-collected data. The work comprised five main consecutive steps, namely, field data collection, data preprocessing, image segmentation, image classification and accuracy assessment. An adapted version of the FIREMON (fire effects monitoring and inventory protocol) landscape assessment method was employed to quantitatively record fire severity in the field. As a result, two different datasets were used: one for training and developing the classification rules, and another one for assessing the accuracy of the classification. Separate and independent data were used for training and for accuracy assessment. Overall accuracy was estimated to be 83%, while the Kappa Index of Agreement obtained was 0.74. The main source of inaccuracy was the inability of IKONOS to penetrate the dense canopy of unburned vegetation. The main conclusion drawn from the present work was that object-based classification applied to IKONOS imagery has the potential to produce accurate maps of fire severity, especially in the case of the open Mediterranean forest.

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print