SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Vasilakos C, Kalabokidis K, Hatzopoulos J, Kallos G, Matsinos Y. Int. J. Wildland Fire 2007; 16(3): 306-316.

Copyright

(Copyright © 2007, International Association of Wildland Fire, Fire Research Institute, Publisher CSIRO Publishing)

DOI

10.1071/WF05091

PMID

unavailable

Abstract

Prevention is one of the most important stages in wildfire and other natural hazard management regimes. Fire danger rating systems have been adopted by many developed countries dealing with wildfire prevention and pre-suppression planning, so that civil protection agencies are able to define areas with high probabilities of fire ignition and resort to necessary actions. This present paper presents a fire ignition risk scheme, developed in the study area of Lesvos Island, Greece, that can be an integral component of a quantitative Fire Danger Rating System. The proposed methodology estimates the geo-spatial fire risk regardless of fire causes or expected burned area, and it has the ability of forecasting based on meteorological data. The main output of the proposed scheme is the Fire Ignition Index, which is based on three other indices: Fire Weather Index, Fire Hazard Index, and Fire Risk Index. These indices are not just a relative probability for fire occurrence, but a rather quantitative assessment of fire danger in a systematic way. Remote sensing data from the high-resolution QuickBird and the Landsat ETM satellite sensors were utilised in order to provide part of the input parameters to the scheme, while Remote Automatic Weather Stations and the SKIRON/Eta weather forecasting system provided real-time and forecasted meteorological data, respectively. Geographic Information Systems were used for management and spatial analyses of the input parameters. The relationship between wildfire occurrence and the input parameters was investigated by neural networks whose training was based on historical data.

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print