SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Sturtevant BR, Cleland DT. Int. J. Wildland Fire 2007; 16(4): 398-413.

Copyright

(Copyright © 2007, International Association of Wildland Fire, Fire Research Institute, Publisher CSIRO Publishing)

DOI

10.1071/WF06023

PMID

unavailable

Abstract

Humans cause most wildfires in northern Wisconsin, but interactions between human and biophysical variables affecting fire starts and size are not well understood. We applied classification tree analyses to a 16-year fire database from northern Wisconsin to evaluate the relative importance of human v. biophysical variables affecting fire occurrence within (1) all cover types, and (2) within forest types in each of four different fire size groupings (all fires; fires ≥0.4 ha (1 acre); fires ≥4 ha (10 acres); fires ≥16 ha (40 acres)). Housing density was the most important indicator of fire observations. Increasing minimum fire size increased the relative importance of biophysical variables. Key biophysical variables included land cover type, soil moisture indicators, and an index of presettlement fire rotation associated with glacial landforms. Our results indicate the likelihood of fire starts is primarily influenced by human activity in northern Wisconsin, whereas biophysical factors determine whether those fire starts become large fires. Important interactions between human and biophysical variables were observed for nearly all fire types and size thresholds examined. Our results have implications for both ecological restoration and the management of fire risk within historically fire-prone systems currently experiencing rapid rural development.

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print