SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Dennison PE, Moritz MA, Taylor RS. Int. J. Wildland Fire 2008; 17(1): 18-27.

Copyright

(Copyright © 2008, International Association of Wildland Fire, Fire Research Institute, Publisher CSIRO Publishing)

DOI

10.1071/WF07017

PMID

unavailable

Abstract

Large wildfires in the Santa Monica Mountains of southern California occur when low levels of live and dead fuel moisture coincide with Santa Ana wind events. Declining live fuel moisture may reach a threshold that increases susceptibility to large wildfires. Live fuel moisture and fire history data for the Santa Monica Mountains from 1984 to 2005 were used to determine a potential critical live fuel moisture threshold, below which large fires become much more likely. The ability of live fuel moisture, remote sensing, and precipitation variables to predict the annual timing of 71 and 77% live fuel moisture thresholds was assessed. Spring precipitation, measured through the months of March, April, and May, was found to be strongly correlated with the annual timing of both live fuel moisture thresholds. Large fires in the Santa Monica Mountains only occurred after the 77% threshold was surpassed, although most large fires occurred after the less conservative 71% threshold. Spring precipitation has fluctuated widely over the past 70 years but does not show evidence of long-term trends. Predictive models of live fuel moisture threshold timing may improve planning for large fires in chaparral ecosystems.

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print