SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Heyerdahl EK, McKenzie D, Daniels LD, Hessl AE, Littell JS, Mantua NJ. Int. J. Wildland Fire 2008; 17(1): 40-49.

Copyright

(Copyright © 2008, International Association of Wildland Fire, Fire Research Institute, Publisher CSIRO Publishing)

DOI

10.1071/WF07024

PMID

unavailable

Abstract

We inferred climate drivers of regionally synchronous surface fires from 1651 to 1900 at 15 sites with existing annually accurate fire-scar chronologies from forests dominated by ponderosa pine or Douglas-fir in the inland Northwest (interior Oregon, Washington and southern British Columbia). Years with widespread fires (35 years with fire at 7 to 11 sites) had warm spring–summers and warm-dry summers, whereas years with no fires at any site (18 years) had the opposite conditions. Spring climate likely affected the length of the fire season via the effects of snowmelt on soil and fuel moisture, whereas summer climate influenced fuel moisture during the fire season. Climate in prior years was not a significant driver of regionally synchronous surface fires, likely because fuels were generally sufficient for the ignition and spread of such fires in these forests. Fires occurred significantly more often than expected by chance when the El Niño–Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO) were both warm phase and less often when they were both cool phase. Interactions between large-scale climate patterns influenced fire synchrony in the inland Northwest because phases of ENSO and PDO were associated with changes in the frequency of warm-dry v. cool-wet spring–summer climate.

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print