SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Wang H, Liu X, Song L, Zhang Y, Rong X, Wang Y. Sensors (Basel) 2024; 24(15).

Copyright

(Copyright © 2024, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/s24154951

PMID

39123998

PMCID

PMC11314946

Abstract

This paper addresses the challenge of detecting unknown or unforeseen obstacles in railway track transportation, proposing an innovative detection strategy that integrates an incremental clustering algorithm with lightweight segmentation techniques. In the detection phase, the paper innovatively employs the incremental clustering algorithm as a core method, combined with dilation and erosion theories, to expand the boundaries of point cloud clusters, merging adjacent point cloud elements into unified clusters. This method effectively identifies and connects spatially adjacent point cloud clusters while efficiently eliminating noise from target object point clouds, thereby achieving more precise recognition of unknown obstacles on the track. Furthermore, the effective integration of this algorithm with lightweight shared convolutional semantic segmentation algorithms enables accurate localization of obstacles. Experimental results using two combined public datasets demonstrate that the obstacle detection average recall rate of the proposed method reaches 90.3%, significantly enhancing system reliability. These findings indicate that the proposed detection strategy effectively improves the accuracy and real-time performance of obstacle recognition, thereby presenting important practical application value for ensuring the safe operation of railway tracks.


Language: en

Keywords

clustering algorithm; obstacle detection; semantic segmentation; train safety protection; YOLOv8

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print