SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Patel H, Davy P, Tollemache C, Talbot N, Salmond J, Williams DE. Sci. Total Environ. 2024; ePub(ePub): ePub.

Copyright

(Copyright © 2024, Elsevier Publishing)

DOI

10.1016/j.scitotenv.2024.175414

PMID

39127221

Abstract

Worldwide, there is an increasing uptake of traffic management interventions aimed at reducing the impact of traffic related air pollution on public health. However, the evidence base linking the proposed changes with the resulting improvements in air quality is lacking. In this paper we present data from a micro-network of low-cost PM(10) samplers collected from an isolated urban centre (Auckland, New Zealand). The data was then analysed using a new combination of analytical methods aimed to identify the composition and hence, the source of pollution. Whilst across the three sites mass concentration of PM(10) and black carbon were similar, Raman spectroscopy successfully identified variations in the soot composition at different sites, enabling some particulate matter to be linked to diesel vehicle emissions. A mass reconstruction approach proved useful in determining that the airshed is well-mixed and also highlighted the impacts of urban design on recorded concentrations. The results show that networks of low-cost sensors, combined with the range of analytical techniques used here can help policymakers test the efficacy of interventions and management strategies designed to combat the burden of air pollution on public health.


Language: en

Keywords

Black carbon; Low-emission zones; PM speciation; Traffic-related air pollution; Urban air quality; Zero-emission zones

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print