SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Lasky E, Costello S, Ndovu A, Aguilera R, Weiser SD, Benmarhnia T. Sci. Total Environ. 2024; ePub(ePub): ePub.

Copyright

(Copyright © 2024, Elsevier Publishing)

DOI

10.1016/j.scitotenv.2024.175284

PMID

39102950

Abstract

This study investigates the relationship between temporal changes in temperatures characterizing local urban heat islands (UHIs) and heat-related illnesses (HRIs) in seven major cities of California. UHIs, which are a phenomenon that arises in the presence of impervious surfaces or the lack of green spaces exacerbate the effects of extreme heat events, can be measured longitudinally using satellite products. The two objectives of this study were: (1) to identify temperature trends in local temperatures to characterize UHIs across zip code tabulation areas (ZCTAs) in the seven observed cities over a 22-year period and (2) to use propensity score and inverse probability weighting to achieve exchangeability between different types of ZCTAs and assess the difference in hospital admissions recorded as HRIs attributable to temporal changes in UHIs. We use monthly land surface temperature data derived from MODIS Terra imagery from the summer months (June-September) from 2000 to 2022. We categorized ZCTAs (into three groups) based on their monthly land surface temperature trends. Of the 216 ZCTAs included in this study, the summertime land surface temperature trends of 43 decreased, while 161 remained unchanged, and 12 increased. Los Angeles had the greatest number of decreased ZCTAs, San Diego and San Jose had the highest number of increased ZCTAs. To analyze the number of monthly HRI attributable to changes in UHI, we used inverse probability of treatment weighting to analyze the difference in HRI between the years of 2006 and 2017 which were two major extreme heat events over the entire State. We observed an average reduction of 3.2 (95 % CI: 0.5; 5.9) HRIs per month and per ZCTAs in decreased neighborhoods as compared to unchanged. This study emphasizes the importance of urban climate adaptation strategies to mitigate the intensity and prevalence of UHIs to reduce health risks related to heat.


Language: en

Keywords

Health; Climate change; Extreme heat events; Heat related illness; Urban; Urban heat islands

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print