SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Park JM, Moon CW, Lee BC, Oh E, Lee J, Jang WJ, Cho KH, Lee SH. Front. Aging Neurosci. 2024; 16: e1437707.

Copyright

(Copyright © 2024, Frontiers Research Foundation)

DOI

10.3389/fnagi.2024.1437707

PMID

39092074

PMCID

PMC11291202

Abstract

BACKGROUNDS: Freezing of gait (FoG) is a common and debilitating symptom of Parkinson's disease (PD) that can lead to falls and reduced quality of life. Wearable sensors have been used to detect FoG, but current methods have limitations in accuracy and practicality. In this paper, we aimed to develop a deep learning model using pressure sensor data from wearable insoles to accurately detect FoG in PD patients.

METHODS: We recruited 14 PD patients and collected data from multiple trials of a standardized walking test using the Pedar insole system. We proposed temporal convolutional neural network (TCNN) and applied rigorous data filtering and selective participant inclusion criteria to ensure the integrity of the dataset. We mapped the sensor data to a structured matrix and normalized it for input into our TCNN. We used a train-test split to evaluate the performance of the model.

RESULTS: We found that TCNN model achieved the highest accuracy, precision, sensitivity, specificity, and F1 score for FoG detection compared to other models. The TCNN model also showed good performance in detecting FoG episodes, even in various types of sensor noise situations.

CONCLUSIONS: We demonstrated the potential of using wearable pressure sensors and machine learning models for FoG detection in PD patients. The TCNN model showed promising results and could be used in future studies to develop a real-time FoG detection system to improve PD patients' safety and quality of life. Additionally, our noise impact analysis identifies critical sensor locations, suggesting potential for reducing sensor numbers.


Language: en

Keywords

Parkinson's disease; convolutional neural network; foot pressure; freezing of gait; insole

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print