SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Li H, Zhu P, Shao Q. Sensors (Basel) 2024; 24(14).

Copyright

(Copyright © 2024, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/s24144577

PMID

39065975

PMCID

PMC11281270

Abstract

Air traffic controllers' mental workload significantly impacts their operational efficiency and safety. Detecting their mental workload rapidly and accurately is crucial for preventing aviation accidents. This study introduces a mental workload detection model for controllers based on power spectrum features related to gamma waves. The model selects the feature with the highest classification accuracy, β + θ + α + γ, and utilizes the mRMR (Max-Relevance and Min-Redundancy) algorithm for channel selection. Furthermore, the channels that were less affected by ICA processing were identified, and the reliability of this result was demonstrated by artifact analysis brought about by EMG, ECG, etc. Finally, a model for rapid mental workload detection for controllers was developed and the detection rate for the 34 subjects reached 1, and the accuracy for the remaining subjects was as low as 0.986. In conclusion, we validated the usability of the mRMR algorithm in channel selection and proposed a rapid method for detecting mental workload in air traffic controllers using only three EEG channels. By reducing the number of EEG channels and shortening the data processing time, this approach simplifies equipment application and maintains detection accuracy, enhancing practical usability.


Language: en

Keywords

Humans; Adult; Female; Male; *Electroencephalography/methods; *Algorithms; *Aviation; *Workload; air traffic controller; detection of mental workload; Electrocardiography/methods; gamma wave; mRMR algorithm; NASA-TXL; Signal Processing, Computer-Assisted

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print