SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Hou H, Shen L, Jia J, Xu Z. Sci. Total Environ. 2024; 949: e174948.

Copyright

(Copyright © 2024, Elsevier Publishing)

DOI

10.1016/j.scitotenv.2024.174948

PMID

39059647

Abstract

Flood disasters cause significant casualties and economic losses annually worldwide. During disasters, accurate and timely information is crucial for disaster management. However, remote sensing cannot balance temporal and spatial resolution, and the coverage of specialized equipment is limited, making continuous monitoring challenging. Real-time disaster-related information shared by social media users offers new possibilities for monitoring. We propose a framework for extracting and analyzing flood information from social media, validated through the 2018 Shouguang flood in China. This framework innovatively combines deep learning techniques and regular expression matching techniques to automatically extract key flood-related information from Weibo textual data, such as problems, floodings, needs, rescues, and measures, achieving an accuracy of 83 %, surpassing traditional models like the Biterm Topic Model (BTM). In the spatiotemporal analysis of the disaster, our research identifies critical time points during the disaster through quantitative analysis of the information and explores the spatial distribution of calls for help using Kernel Density Estimation (KDE), followed by identifying the core affected areas using the Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN) algorithm. For semantic analysis, we adopt the Latent Dirichlet Allocation (LDA) algorithm to perform topic modeling on Weibo texts from different regions, identifying the types of disasters affecting each township. Additionally, through correlation analysis, we investigate the relationship between disaster rescue requests and response measures to evaluate the adequacy of flood response measures in each township. The research results demonstrate that this analytical framework can accurately extract disaster information, precisely identify critical time points in flood disasters, locate core affected areas, uncover primary regional issues, and further validate the sufficiency of response measures, therefore enhancing the efficiency in collecting disaster information and analytical capabilities.


Language: en

Keywords

Deep learning; Information extraction; LDA model; Regular expression matching; Social media text; Spatiotemporal analysis

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print