SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Özgür S, Koçaslan Toran M, Toygar, Yalçın GY, Eraksoy M. BMC Med. Inform. Decis. Mak. 2024; 24(1): e215.

Copyright

(Copyright © 2024, Holtzbrinck Springer Nature Publishing Group - BMC)

DOI

10.1186/s12911-024-02621-0

PMID

39080657

PMCID

PMC11289943

Abstract

BACKGROUND: Falls in multiple sclerosis can result in numerous problems, including injuries and functional loss. Therefore, determining the factors contributing to falls in people with Multiple Sclerosis (PwMS) is crucial. This study aims to investigate the contributing factors to falls in multiple sclerosis using a machine learning approach.

METHODS: This cross-sectional study was conducted with 253 PwMS admitted to the outpatient clinic of a university hospital between February and August 2023. A sociodemographic data collection form, Fall Efficacy Scale (FES-I), Berg Balance Scale (BBS), Fatigue Severity Scale (FSS), Expanded Disability Status Scale (EDSS), Multiple Sclerosis Impact Scale (MSIS-29), and Timed 25 Foot Walk Test (T25-FW) were used for data collection. Gradient-boosting algorithms were employed to predict the important variables for falls in PwMS. The XGBoost algorithm emerged as the best performed model in this study.

RESULTS: Most of the participants (70.0%) were female, with a mean age of 40.44 ± 10.88 years. Among the participants, 40.7% reported a fall history in the last year. The area under the curve value of the model was 0.713. Risk factors of falls in PwMS included MSIS-29 (0.424), EDSS (0.406), marital status (0.297), education level (0.240), disease duration (0.185), age (0.130), family type (0.119), smoking (0.031), income level (0.031), and regular exercise habit (0.026).

CONCLUSIONS: In this study, smoking and regular exercise were the modifiable factors contributing to falls in PwMS. We recommend that clinicians facilitate the modification of these factors in PwMS. Age and disease duration were non-modifiable factors. These should be considered as risk increasing factors and used to identify PwMS at risk. Interventions aimed at reducing MSIS-29 and EDSS scores will help to prevent falls in PwMS. Education of individuals to increase knowledge and awareness is recommended. Financial support policies for those with low income will help to reduce the risk of falls.


Language: en

Keywords

Humans; Cross-Sectional Studies; Risk Factors; Adult; Female; Male; Middle Aged; Machine learning; Fall; *Machine Learning; *Accidental Falls; *Multiple Sclerosis; Multiple sclerosis; Risk factors,Risk prediction

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print