SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Tzortzinis G, Filippatos A, Wittig J, Gude M, Provost A, Ai C, Gerasimidis S. Communications engineering 2024; 3(1): e106.

Copyright

(Copyright © 2024, Holtzbrinck Springer Nature Publishing Group)

DOI

10.1038/s44172-024-00255-8

PMID

39090208

Abstract

For steel bridges, corrosion has historically led to bridge failures, resulting in fatalities and injuries. To enhance public safety and prevent such incidents, authorities mandate in-situ evaluation and reporting of corroded members. The current inspection and evaluation protocol is characterized by intense labor, traffic delays, and poor capacity predictions. Here we combine full-scale experimental testing of a decommissioned girder, 3D laser scanning, and convolutional neural networks (CNNs) to introduce a continuous inspection and evaluation framework. Classification and regression CNNs are trained on a databank of 1,421 naturally inspired corrosion scenarios, generated computationally based on point clouds of three corroded girders collected in lab conditions.

RESULTS indicate low errors of up to 2.0% and 3.3%, respectively. The methodology is validated on eight real corroded ends and implemented for the evaluation of an in-service bridge. This framework promises significant advancements in assessing aging bridge infrastructure with higher accuracy and efficiency compared to analytical or semi-analytical approaches.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print