SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Liu Z, Dai C, Li X. Heliyon 2024; 10(13): e32708.

Copyright

(Copyright © 2024, Elsevier Publishing)

DOI

10.1016/j.heliyon.2024.e32708

PMID

39027556

PMCID

PMC467071

Abstract

This paper proposes an efficient electric bicycle tracking algorithm, EBTrack, utilizing the high-precision and lightweight YOLOv7 as the target detector to enhance the efficiency of illegal detection and recognition of electric bicycles. The EBTrack effectively captures the position and trajectory of electric bicycles in complex traffic monitoring scenarios. Firstly, we introduce the feature extraction network, ResNetEB, specifically designed for feature re-identification of electric bicycles. To maintain real-time performance, feature extraction is performed only when generating new object IDs, minimizing the impact on processing speed. Secondly, for accurate target trajectory prediction, we incorporate an adaptive modulated noise scale Kalman filter. Additionally, considering the uncertainty of electric bicycle entry directions in traffic monitoring scenarios, we design a specialized matching mechanism to reduce frequent ID switching. Finally, to validate the algorithm's effectiveness, we have collected diverse video image data of electric bicycle and urban road traffic in Hefei, Anhui Province, encompassing different perspectives, time periods, and weather conditions. We have trained the proposed detector and have evaluated its tracking performance on this comprehensive dataset. Experimental results demonstrate that EBTrack achieves impressive accuracy, with 89.8 % MOTA (Multiple Object Tracking Accuracy) and 94.2 % IDF1 (ID F1-Score). Furthermore, the algorithm effectively reduces ID switching, significantly improving tracking stability and continuity.


Language: en

Keywords

ByteTrack; Convolutional neural networks; Electric bicycle detection; Multi-object tracking; Object detection

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print