SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Wang C, Guo F, Zhao S, Zhu Z, Zhang Y. Accid. Anal. Prev. 2024; 206: e107710.

Copyright

(Copyright © 2024, Elsevier Publishing)

DOI

10.1016/j.aap.2024.107710

PMID

39018627

Abstract

Driver models are crucial for the safety assessment of autonomous vehicles (AVs) because of their role as reference models. Specifically, an AV is expected to achieve at least the same level of safety performance as a careful and competent driver model. To make this comparison possible, quantitative modeling of careful and competent driver models is essential. Thus, the UNECE Regulation No. 157 proposes two driver models as benchmarks for AVs, enabling safety assessment of AV longitudinal behaviors. However, these two driver models are unable to be applied in non-car-following scenarios, limiting their applications in scenarios such as highway merging. To this end, we propose a careful and competent driver model for highway merging (CCDM2) scenarios using interpretable reinforcement learning-based decision-making and safety constraint control. We compare our model's safe driving capabilities with human drivers in challenging merging scenarios and demonstrate the "careful" and "competent" characteristics of our model while ensuring its interpretability. The results indicate the model's capability to handle merging scenarios with even better safety performance than human drivers. This model is of great value for AV safety assessment in merging scenarios and contributes to future reference driver models to be included in AV safety regulations.


Language: en

Keywords

Autonomous vehicles; Driver model; Model predictive control; Reinforcement learning; Vehicle safety

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print