SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Lu W, Shi X, Lu Z. PLoS One 2024; 19(7): e0305933.

Copyright

(Copyright © 2024, Public Library of Science)

DOI

10.1371/journal.pone.0305933

PMID

39024329

PMCID

PMC11257314

Abstract

High-resolution remote sensing technology is an efficient and low-cost space-to-earth observation strategy, which can carry out simultaneous monitoring of large-scale areas. It has incomparable advantages over ground monitoring solutions. Traditional road extraction methods are mainly based on image processing techniques. These methods usually only use one or a few features of images, which is difficult to fully deal with the real situation of roads. This work proposes a two-steps network for the road extraction. First, we optimize a pix2pix model for image translation to obtain the required map style image. Images output by the optimized model is full of road features and can relief the occlusion issues. It can intuitively reflect information such as the position, shape and size of the road. After that, we propose a new FusionLinkNet model, which has a strong stability in the road information by fusing the DenseNet, ResNet and LinkNet. Experiments show that our accuracy and learning rate have been improved. The MIOU (Mean Intersection Over Union) value of the proposed model in road extraction is over 80% in both DeepGlobe and Massachusetts road dataset. The figures are available from https://github.com/jsit-luwei/training-dataset.


Language: en

Keywords

Algorithms; *Image Processing, Computer-Assisted/methods; *Remote Sensing Technology/methods

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print