SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Liu J, Chen X. Accid. Anal. Prev. 2024; 206: e107716.

Copyright

(Copyright © 2024, Elsevier Publishing)

DOI

10.1016/j.aap.2024.107716

PMID

39018628

Abstract

The rising prevalence of e-bikes and shared bikes in transportation modes adds complexity to pedestrian movement at intersections. The conflict technique is a substitute for collisions in analyzing pedestrian safety at digital countdown signal intersections. Pedestrian and two-wheeler trajectories were obtained using Unmanned Aerial Vehicle (UAV) and T-Analyst software. The severity of pedestrian-two-vehicle conflicts was assessed using indicators such as Time to Collision (TTC), Post Encroachment Time (PET), and Yaw Rate Ratio (YRR), along with the fuzzy C-mean clustering method. An analysis of the impact of pedestrian characteristics, cyclist characteristics, and road conflict factors on severity was conducted using a random parameter ordered logit model. A total of 630 valid conflicts were identified, comprising 105 potential conflicts, 242 minor conflicts, and 283 serious conflicts. More minor and serious conflicts occurred in Signal 1 and Signal 2. Serious conflicts mainly occurred in road Zone 2, Zone 3, and Zone 5, while minor conflicts were more frequent in Zone 4 and Zone 5. Pedestrian crossing at Signal 2 increased the conflict severity, and the refuge island had a similar effect. Cyclists passing the conflict point first reduced the probability of serious conflicts. Older adults are safer at countdown signal intersections than young people. It is essential to enhance the awareness of digital countdown signals among youth. Managers should consider diverting two-wheelers during peak hours and encourage cyclists to walk through crosswalks.


Language: en

Keywords

Digital countdown signals; Ordered logit model; Pedestrian conflicts; Zones

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print