SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Silvestros P, Quarrington RD, Preatoni E, Gill HS, Jones CF, Cazzola D. Ann. Biomed. Eng. 2024; ePub(ePub): ePub.

Copyright

(Copyright © 2024, Holtzbrinck Springer Nature Publishing Group)

DOI

10.1007/s10439-024-03576-z

PMID

39004695

Abstract

Catastrophic cervical spine injuries in rugby often occur during tackling. The underlying mechanisms leading to these injuries remain unclear, with neck hyperflexion and buckling both proposed as the causative factor in the injury prevention literature. The aim of this study was to evaluate the effect of pre-impact head-neck posture on intervertebral neck loads and motions during a head-first rugby tackle. Using a validated, subject-specific musculoskeletal model of a rugby player, and computer simulations driven by in vivo and in vitro data, we examined the dynamic response of the cervical spine under such impact conditions. The simulations demonstrated that the initial head-neck sagittal-plane posture affected intervertebral loads and kinematics, with an extended neck resulting in buckling and supraphysiologic intervertebral shear and flexion loads and motions, typical of bilateral facet dislocation injuries. In contrast, an initially flexed neck increased axial compression forces and flexion angles without exceeding intervertebral physiological limits. These findings provide objective evidence that can inform injury prevention strategies or rugby law changes to improve the safety of the game of rugby.


Language: en

Keywords

Spine; Contact sport; Injury mechanisms; Injury prevention; Musculoskeletal modeling; Rugby

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print