SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Xia X, Lu J, Ma X, Zhang J, Chen J, Gu C. Accid. Anal. Prev. 2024; 206: e107709.

Copyright

(Copyright © 2024, Elsevier Publishing)

DOI

10.1016/j.aap.2024.107709

PMID

38986432

Abstract

Driving behaviors are important cause of expressway crash. In this study, method based on modified time-to-collision (MTTC) to identify risky driving behaviors on an expressway diverge area is proposed, thus investigating the impact of velocity and acceleration features of risky driving behavior. Firstly, MTTC is applied to judge whether the behavior is risky. Then, the relationships between velocity, acceleration and different driving behavior on the expressway diverge area were fit by binary logistic regression models (BLR) with L2 regularization and random forests (RF) models, and the models were interpreted by feature importance plots and partial dependency plots. The results show that the AUC metric of 4 RF models for 4 types of driving behaviors, namely, left lane change, right lane change, acceleration and deceleration, are 0.932, 0.845, 0.846 and 0.860 separately. The interpretation of models demonstrates that velocity and absolute value of acceleration greatly affect the risk of the driving behaviors. Different driving behaviors with a certain acceleration have a range of safety speed range. The range will get narrower with the growth of maximum absolute value of acceleration rate, and will be nearly non-exist when the acceleration is over 5 m/s(2). In conclusion, this study provided a methodology to measure the risk of driving behaviors and establish a model to recognize of risky driving behaviors. The results can lay the foundation for making countermeasures to prevent risky driving behaviors by managing the vehicle speed.


Language: en

Keywords

Machine learning; Risk prediction; Diverging area; Driving behavior; Expressway safety; Modified time to collision

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print