SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Cherian J, Ray S, Taele P, Koh JI, Hammond T. Sensors (Basel) 2024; 24(12): e3898.

Copyright

(Copyright © 2024, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/s24123898

PMID

38931682

Abstract

Monitoring activities of daily living (ADLs) plays an important role in measuring and responding to a person's ability to manage their basic physical needs. Effective recognition systems for monitoring ADLs must successfully recognize naturalistic activities that also realistically occur at infrequent intervals. However, existing systems primarily focus on either recognizing more separable, controlled activity types or are trained on balanced datasets where activities occur more frequently. In our work, we investigate the challenges associated with applying machine learning to an imbalanced dataset collected from a fully in-the-wild environment. This analysis shows that the combination of preprocessing techniques to increase recall and postprocessing techniques to increase precision can result in more desirable models for tasks such as ADL monitoring. In a user-independent evaluation using in-the-wild data, these techniques resulted in a model that achieved an event-based F1-score of over 0.9 for brushing teeth, combing hair, walking, and washing hands. This work tackles fundamental challenges in machine learning that will need to be addressed in order for these systems to be deployed and reliably work in the real world.


Language: en

Keywords

Humans; Algorithms; *Machine Learning; *Activities of Daily Living; *Human Activities; activities of daily living; class imbalance; human activity recognition; in-the-wild; Pattern Recognition, Automated/methods; postprocessing; preprocessing; smartwatch; Walking/physiology

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print