SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Abboush M, Knieke C, Rausch A. Sensors (Basel) 2024; 24(12): e3733.

Copyright

(Copyright © 2024, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/s24123733

PMID

38931515

Abstract

To validate safety-related automotive software systems, experimental tests are conducted at different stages of the V-model, which are referred as "X-in-the-loop (XIL) methods". However, these methods have significant drawbacks in terms of cost, time, effort and effectiveness. In this study, based on hardware-in-the-loop (HIL) simulation and real-time fault injection (FI), a novel testing framework has been developed to validate system performance under critical abnormal situations during the development process. The developed framework provides an approach for the real-time analysis of system behavior under single and simultaneous sensor/actuator-related faults during virtual test drives without modeling effort for fault mode simulations. Unlike traditional methods, the faults are injected programmatically and the system architecture is ensured without modification to meet the real-time constraints. Moreover, a virtual environment is modeled with various environmental conditions, such as weather, traffic and roads. The validation results demonstrate the effectiveness of the proposed framework in a variety of driving scenarios. The evaluation results demonstrate that the system behavior via HIL simulation has a high accuracy compared to the non-real-time simulation method with an average relative error of 2.52. The comparative study with the state-of-the-art methods indicates that the proposed approach exhibits superior accuracy and capability. This, in turn, provides a safe, reliable and realistic environment for the real-time validation of complex automotive systems at a low cost, with minimal time and effort.


Language: en

Keywords

automotive software systems; fault injection; hardware in the loop (HIL); model-based development; real-time systems; safety validation; system integration and test; virtual test

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print