SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Longridge NS, Mallinson AI. Audiol. Res. 2024; 14(3): 518-544.

Copyright

(Copyright © 2024, PagePress)

DOI

10.3390/audiolres14030044

PMID

38920965

Abstract

Bipedalism is unique among mammals. Until modern times, a fall and resulting leg fracture could be fatal. Balance maintenance after a destabilizing event requires instantaneous decision making. The vestibular system plays an essential role in this process, initiating an emergency response. The afferent otolithic neural response is the first directionally oriented information to reach the cortex, and it can then be used to initiate an appropriate protective response. Some vestibular efferent axons feed directly into type I vestibular hair cells. This allows for rapid vestibular feedback via the striated organelle (STO), which has been largely ignored in most texts. We propose that this structure is essential in emergency fall prevention, and also that the system of sensory detection and resultant motor response works by having efferent movement information simultaneously transmitted to the maculae with the movement commands. This results in the otolithic membrane positioning itself precisely for the planned movement, and any error is due to an unexpected external cause. Error is fed back via the vestibular afferent system. The efferent system causes macular otolithic membrane movement through the STO, which occurs simultaneously with the initiating motor command. As a result, no vestibular afferent activity occurs unless an error must be dealt with.


Language: en

Keywords

ambulation feedforward evolution; hair cells; otoliths; utricle saccule; vestibular efferents; vestibular morphology

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print